Parameter identifiability and model selection for sigmoid population growth models
Sigmoid growth models, such as the logistic, Gompertz and Richards’ models, are widely used to study population dynamics ranging from microscopic populations of cancer cells, to continental-scale human populations. Fundamental questions about model selection and parameter estimation are critical if...
المؤلفون الرئيسيون: | Simpson, MJ, Browning, AP, Warne, DJ, Maclaren, OJ, Baker, RE |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Elsevier
2021
|
مواد مشابهة
-
Identifiability analysis for stochastic differential equation models in systems biology
حسب: Browning, AP, وآخرون
منشور في: (2020) -
Practical parameter identifiability for spatio-temporal models of cell invasion
حسب: Simpson, MJ, وآخرون
منشور في: (2020) -
Profile likelihood analysis for a stochastic model of diffusion in heterogeneous media
حسب: Simpson, MJ, وآخرون
منشور في: (2021) -
Rapid Bayesian inference for expensive stochastic models
حسب: Warne, DJ, وآخرون
منشور في: (2021) -
Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models
حسب: Simpson, MJ, وآخرون
منشور في: (2022)