Parameter identifiability and model selection for sigmoid population growth models
Sigmoid growth models, such as the logistic, Gompertz and Richards’ models, are widely used to study population dynamics ranging from microscopic populations of cancer cells, to continental-scale human populations. Fundamental questions about model selection and parameter estimation are critical if...
主要な著者: | Simpson, MJ, Browning, AP, Warne, DJ, Maclaren, OJ, Baker, RE |
---|---|
フォーマット: | Journal article |
言語: | English |
出版事項: |
Elsevier
2021
|
類似資料
-
Identifiability analysis for stochastic differential equation models in systems biology
著者:: Browning, AP, 等
出版事項: (2020) -
Practical parameter identifiability for spatio-temporal models of cell invasion
著者:: Simpson, MJ, 等
出版事項: (2020) -
Profile likelihood analysis for a stochastic model of diffusion in heterogeneous media
著者:: Simpson, MJ, 等
出版事項: (2021) -
Rapid Bayesian inference for expensive stochastic models
著者:: Warne, DJ, 等
出版事項: (2021) -
Reliable and efficient parameter estimation using approximate continuum limit descriptions of stochastic models
著者:: Simpson, MJ, 等
出版事項: (2022)