On two-dimensional sonic-subsonic flow

A compensated compactness framework is established for sonic-subsonic approximate solutions to the two-dimensional Euler equations for steady irrotational flows that may contain stagnation points. Only crude estimates are required for establishing compactness. It follows that the set of subsonic irr...

Full description

Bibliographic Details
Main Authors: Chen, G, Dafermos, C, Slemrod, M, Wang, D
Format: Journal article
Language:English
Published: 2007
Description
Summary:A compensated compactness framework is established for sonic-subsonic approximate solutions to the two-dimensional Euler equations for steady irrotational flows that may contain stagnation points. Only crude estimates are required for establishing compactness. It follows that the set of subsonic irrotational solutions to the Euler equations is compact; thus flows with sonic points over an obstacle, such as an airfoil, may be realized as limits of sequences of strictly subsonic flows. Furthermore, sonic-subsonic flows may be constructed from approximate solutions. The compactness framework is then extended to self-similar solutions of the Euler equations for unsteady irrotational flows. © Springer-Verlag 2007.