Generalization error of graph neural networks in the mean-field regime
This work provides a theoretical framework for assessing the generalization error of graph neural networks in the over-parameterized regime, where the number of parameters surpasses the quantity of data points. We explore two widely utilized types of graph neural networks: graph convolutional neural...
المؤلفون الرئيسيون: | , , , , |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Proceedings of Machine Learning Research
2024
|