Generalization error of graph neural networks in the mean-field regime

This work provides a theoretical framework for assessing the generalization error of graph neural networks in the over-parameterized regime, where the number of parameters surpasses the quantity of data points. We explore two widely utilized types of graph neural networks: graph convolutional neural...

Full beskrivning

Bibliografiska uppgifter
Huvudupphovsmän: Aminian, G, He, Y, Reinert, G, Szpruch, L, Cohen, S
Materialtyp: Conference item
Språk:English
Publicerad: Proceedings of Machine Learning Research 2024