Generalization error of graph neural networks in the mean-field regime
This work provides a theoretical framework for assessing the generalization error of graph neural networks in the over-parameterized regime, where the number of parameters surpasses the quantity of data points. We explore two widely utilized types of graph neural networks: graph convolutional neural...
Hlavní autoři: | Aminian, G, He, Y, Reinert, G, Szpruch, L, Cohen, S |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Proceedings of Machine Learning Research
2024
|
Podobné jednotky
-
MSGNN: a spectral graph neural network based on a novel magnetic signed Laplacian
Autor: He, Y, a další
Vydáno: (2022) -
GNNRank: learning global rankings from pairwise comparisons via directed graph neural networks
Autor: He, Y, a další
Vydáno: (2022) -
Graph neural networks for network analysis
Autor: He, Y
Vydáno: (2024) -
GDRMA: Graph Neural Networks for Document Retrievals With Mean Aggregation
Autor: Shigeru Maya
Vydáno: (2024-01-01) -
Physics-Informed Graph Neural Operator for Mean Field Games on Graph: A Scalable Learning Approach
Autor: Xu Chen, a další
Vydáno: (2024-03-01)