Probabilistic load forecasting using post-processed weather ensemble predictions

Probabilistic forecasting of electricity demand (load) facilitates the efficient management and operations of energy systems. Weather is a key determinant of load. However, modelling load using weather is challenging because the relationship cannot be assumed to be linear. Although numerous studies...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Ludwig, N, Arora, S, Taylor, JW
Định dạng: Journal article
Ngôn ngữ:English
Được phát hành: Taylor and Francis 2022
Miêu tả
Tóm tắt:Probabilistic forecasting of electricity demand (load) facilitates the efficient management and operations of energy systems. Weather is a key determinant of load. However, modelling load using weather is challenging because the relationship cannot be assumed to be linear. Although numerous studies have focussed on load forecasting, the literature on using the uncertainty in weather while estimating the load probability distribution is scarce. In this study, we model load for Great Britain using weather ensemble predictions, for lead times from one to six days ahead. A weather ensemble comprises a range of plausible future scenarios for a weather variable. It has been shown that the ensembles from weather models tend to be biased and underdispersed, which requires that the ensembles are post-processed. Surprisingly, the post-processing of weather ensembles has not yet been employed for probabilistic load forecasting. We post-process ensembles based on: (1) ensemble model output statistics: to correct for bias and dispersion errors by calibrating the ensembles, and (2) ensemble copula coupling: to ensure that ensembles remain physically consistent scenarios after calibration. The proposed approach compares favourably to the case when no weather information, raw weather ensembles or post-processed ensembles without ensemble copula coupling are used during the load modelling.