Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity
The bifurcation of asymmetric superconducting solutions from the normal solution is considered for the one-dimensional Ginzburg--Landau equations by the methods of formal asymptotics. The behavior of the bifurcating branch depends on the parameters d, the size of the superconducting slab, and $\kapp...
Автори: | Aftalion, A, Chapman, S |
---|---|
Формат: | Journal article |
Опубліковано: |
2000
|
Схожі ресурси
Схожі ресурси
-
Asymptotic analysis of a secondary bifurcation of the one-dimensional Ginzburg-Landau equations of superconductivity
за авторством: Aftalion, A, та інші
Опубліковано: (2000) -
Asymptotic analysis of the bifurcation diagram for symmetric one-dimensional solutions of the Ginzburg-Landau equations
за авторством: Aftalion, A, та інші
Опубліковано: (1999) -
ASYMPTOTIC ANALYSIS OF THE GINZBURG-LANDAU MODEL OF SUPERCONDUCTIVITY - REDUCTION TO A FREE-BOUNDARY MODEL
за авторством: Chapman, S
Опубліковано: (1995) -
Bifurcations of Nonconstant Solutions of the Ginzburg-Landau Equation
за авторством: Norimichi Hirano, та інші
Опубліковано: (2012-01-01) -
Travelling waves bifurcation of the modified Ginzburg-Landau's equation
за авторством: A. E. Kotikov, та інші
Опубліковано: (2008-03-01)