Tangent space and dimension estimation with the Wasserstein distance

Consider a set of points sampled independently near a smooth compact submanifold of Euclidean space. We provide mathematically rigorous bounds on the number of sample points required to estimate both the dimension and the tangent spaces of that manifold with high confidence. The algorithm for this e...

全面介绍

书目详细资料
Main Authors: Lim, U, Oberhauser, H, Nanda, V
格式: Journal article
语言:English
出版: Society for Industrial and Applied Mathematics 2024
实物特征
总结:Consider a set of points sampled independently near a smooth compact submanifold of Euclidean space. We provide mathematically rigorous bounds on the number of sample points required to estimate both the dimension and the tangent spaces of that manifold with high confidence. The algorithm for this estimation is Local PCA, a local version of principal component analysis. Our results accommodate for noisy nonuniform data distribution with the noise that may vary across the manifold, and allow simultaneous estimation at multiple points. Crucially, all of the constants appearing in our bound are explicitly described. The proof uses a matrix concentration inequality to estimate covariance matrices and a Wasserstein distance bound for quantifying nonlinearity of the underlying manifold and nonuniformity of the probability measure.