Bridging max graph neural networks and datalog with negation
We consider a general class of data transformations based on Graph Neural Networks (GNNs), which can be used for a wide variety of tasks. An important question in this setting is characterising the expressive power of these transformations in terms of a suitable logic-based language. From a practica...
Auteurs principaux: | Tena Cucala, D, Cuenca Grau, B |
---|---|
Format: | Conference item |
Langue: | English |
Publié: |
IJCAI Organization
2024
|
Documents similaires
-
On the correspondence between monotonic max-sum GNNs and datalog
par: Tena Cucala, D, et autres
Publié: (2023) -
On the correspondence between monotonic max-sum GNNs and Datalog
par: Tena Cucala, D, et autres
Publié: (2023) -
Stratified negation in datalog with metric temporal operators
par: Tena Cucala, D, et autres
Publié: (2021) -
DatalogMTL with negation under stable models semantics
par: Wałęga, PA, et autres
Publié: (2021) -
The stable model semantics of datalog with metric temporal operators
par: Walega, P, et autres
Publié: (2023)