Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys

The quantitative correlation between strength, ductility and precipitate microstructures in the vicinity of grain boundaries with precipitate free zones (PFZ) was evaluated for Al-Zn-Mg(-Ag, Cu) alloys using transmission electron microscopy (TEM), three-dimensional atom probe (3DAP) and tensile test...

詳細記述

書誌詳細
主要な著者: Ogura, T, Hirosawa, S, Cerezo, A, Sato, T
フォーマット: Conference item
出版事項: 2006
その他の書誌記述
要約:The quantitative correlation between strength, ductility and precipitate microstructures in the vicinity of grain boundaries with precipitate free zones (PFZ) was evaluated for Al-Zn-Mg(-Ag, Cu) alloys using transmission electron microscopy (TEM), three-dimensional atom probe (3DAP) and tensile test. In the Al-Zn-Mg ternary and Cu-added alloys aged at 433K, larger widths of PFZ were observed by TEM and resulted in lower elongations to fracture, independent of the size of grain boundary precipitates. On the other hand, the elongation of the Ag-added alloy was higher, if compared at the same levels of proof stress, due to the much smaller width of PFZ. This strongly suggests that PFZ is harmful to fracture of the investigated alloys. From a 3DAP analysis, furthermore, it was revealed that Ag and Cu atoms are incorporated in the nanoclusters from the initial stage of aging. In this work, the elongation was well correlated to the width of PFZ, size of grain boundary precipitates and the level of proof stress, enabling to predict ductility of the alloys from known microstructural factors.