Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys
The quantitative correlation between strength, ductility and precipitate microstructures in the vicinity of grain boundaries with precipitate free zones (PFZ) was evaluated for Al-Zn-Mg(-Ag, Cu) alloys using transmission electron microscopy (TEM), three-dimensional atom probe (3DAP) and tensile test...
Main Authors: | , , , |
---|---|
Format: | Conference item |
Published: |
2006
|
_version_ | 1826295601208229888 |
---|---|
author | Ogura, T Hirosawa, S Cerezo, A Sato, T |
author_facet | Ogura, T Hirosawa, S Cerezo, A Sato, T |
author_sort | Ogura, T |
collection | OXFORD |
description | The quantitative correlation between strength, ductility and precipitate microstructures in the vicinity of grain boundaries with precipitate free zones (PFZ) was evaluated for Al-Zn-Mg(-Ag, Cu) alloys using transmission electron microscopy (TEM), three-dimensional atom probe (3DAP) and tensile test. In the Al-Zn-Mg ternary and Cu-added alloys aged at 433K, larger widths of PFZ were observed by TEM and resulted in lower elongations to fracture, independent of the size of grain boundary precipitates. On the other hand, the elongation of the Ag-added alloy was higher, if compared at the same levels of proof stress, due to the much smaller width of PFZ. This strongly suggests that PFZ is harmful to fracture of the investigated alloys. From a 3DAP analysis, furthermore, it was revealed that Ag and Cu atoms are incorporated in the nanoclusters from the initial stage of aging. In this work, the elongation was well correlated to the width of PFZ, size of grain boundary precipitates and the level of proof stress, enabling to predict ductility of the alloys from known microstructural factors. |
first_indexed | 2024-03-07T04:03:33Z |
format | Conference item |
id | oxford-uuid:c564b83c-66ea-4426-aaff-3524e26ff934 |
institution | University of Oxford |
last_indexed | 2024-03-07T04:03:33Z |
publishDate | 2006 |
record_format | dspace |
spelling | oxford-uuid:c564b83c-66ea-4426-aaff-3524e26ff9342022-03-27T06:30:29ZQuantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloysConference itemhttp://purl.org/coar/resource_type/c_5794uuid:c564b83c-66ea-4426-aaff-3524e26ff934Symplectic Elements at Oxford2006Ogura, THirosawa, SCerezo, ASato, TThe quantitative correlation between strength, ductility and precipitate microstructures in the vicinity of grain boundaries with precipitate free zones (PFZ) was evaluated for Al-Zn-Mg(-Ag, Cu) alloys using transmission electron microscopy (TEM), three-dimensional atom probe (3DAP) and tensile test. In the Al-Zn-Mg ternary and Cu-added alloys aged at 433K, larger widths of PFZ were observed by TEM and resulted in lower elongations to fracture, independent of the size of grain boundary precipitates. On the other hand, the elongation of the Ag-added alloy was higher, if compared at the same levels of proof stress, due to the much smaller width of PFZ. This strongly suggests that PFZ is harmful to fracture of the investigated alloys. From a 3DAP analysis, furthermore, it was revealed that Ag and Cu atoms are incorporated in the nanoclusters from the initial stage of aging. In this work, the elongation was well correlated to the width of PFZ, size of grain boundary precipitates and the level of proof stress, enabling to predict ductility of the alloys from known microstructural factors. |
spellingShingle | Ogura, T Hirosawa, S Cerezo, A Sato, T Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys |
title | Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys |
title_full | Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys |
title_fullStr | Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys |
title_full_unstemmed | Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys |
title_short | Quantitative correlation between strength, ductility and precipitate microstructures with PFZ in Al-Zn-Mg(-Ag, Cu) alloys |
title_sort | quantitative correlation between strength ductility and precipitate microstructures with pfz in al zn mg ag cu alloys |
work_keys_str_mv | AT ogurat quantitativecorrelationbetweenstrengthductilityandprecipitatemicrostructureswithpfzinalznmgagcualloys AT hirosawas quantitativecorrelationbetweenstrengthductilityandprecipitatemicrostructureswithpfzinalznmgagcualloys AT cerezoa quantitativecorrelationbetweenstrengthductilityandprecipitatemicrostructureswithpfzinalznmgagcualloys AT satot quantitativecorrelationbetweenstrengthductilityandprecipitatemicrostructureswithpfzinalznmgagcualloys |