A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa

Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter....

Full description

Bibliographic Details
Main Authors: Perraud, Q, Moynié, L, Gasser, V, Munier, M, Godet, J, Hoegy, F, Mély, Y, Mislin, G, Naismith, J, Schalk, I
Format: Journal article
Language:English
Published: American Chemical Society 2018
_version_ 1797093674465624064
author Perraud, Q
Moynié, L
Gasser, V
Munier, M
Godet, J
Hoegy, F
Mély, Y
Mislin, G
Naismith, J
Schalk, I
author_facet Perraud, Q
Moynié, L
Gasser, V
Munier, M
Godet, J
Hoegy, F
Mély, Y
Mislin, G
Naismith, J
Schalk, I
author_sort Perraud, Q
collection OXFORD
description Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.
first_indexed 2024-03-07T04:03:42Z
format Journal article
id oxford-uuid:c571507a-513d-4e97-a07c-91163266775c
institution University of Oxford
language English
last_indexed 2024-03-07T04:03:42Z
publishDate 2018
publisher American Chemical Society
record_format dspace
spelling oxford-uuid:c571507a-513d-4e97-a07c-91163266775c2022-03-27T06:30:58ZA key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosaJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:c571507a-513d-4e97-a07c-91163266775cEnglishSymplectic Elements at OxfordAmerican Chemical Society2018Perraud, QMoynié, LGasser, VMunier, MGodet, JHoegy, FMély, YMislin, GNaismith, JSchalk, IEnterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm.
spellingShingle Perraud, Q
Moynié, L
Gasser, V
Munier, M
Godet, J
Hoegy, F
Mély, Y
Mislin, G
Naismith, J
Schalk, I
A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
title A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
title_full A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
title_fullStr A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
title_full_unstemmed A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
title_short A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
title_sort key role for the periplasmic pfee esterase in iron acquisition via the siderophore enterobactin in pseudomonas aeruginosa
work_keys_str_mv AT perraudq akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT moyniel akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT gasserv akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT munierm akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT godetj akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT hoegyf akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT melyy akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT misling akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT naismithj akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT schalki akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT perraudq keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT moyniel keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT gasserv keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT munierm keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT godetj keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT hoegyf keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT melyy keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT misling keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT naismithj keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa
AT schalki keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa