A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa
Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter....
Main Authors: | , , , , , , , , , |
---|---|
Format: | Journal article |
Sprog: | English |
Udgivet: |
American Chemical Society
2018
|
_version_ | 1826295611247296512 |
---|---|
author | Perraud, Q Moynié, L Gasser, V Munier, M Godet, J Hoegy, F Mély, Y Mislin, G Naismith, J Schalk, I |
author_facet | Perraud, Q Moynié, L Gasser, V Munier, M Godet, J Hoegy, F Mély, Y Mislin, G Naismith, J Schalk, I |
author_sort | Perraud, Q |
collection | OXFORD |
description | Enterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm. |
first_indexed | 2024-03-07T04:03:42Z |
format | Journal article |
id | oxford-uuid:c571507a-513d-4e97-a07c-91163266775c |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T04:03:42Z |
publishDate | 2018 |
publisher | American Chemical Society |
record_format | dspace |
spelling | oxford-uuid:c571507a-513d-4e97-a07c-91163266775c2022-03-27T06:30:58ZA key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosaJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:c571507a-513d-4e97-a07c-91163266775cEnglishSymplectic Elements at OxfordAmerican Chemical Society2018Perraud, QMoynié, LGasser, VMunier, MGodet, JHoegy, FMély, YMislin, GNaismith, JSchalk, IEnterobactin (ENT) is a siderophore (iron-chelating compound) produced by Escherichia coli to gain access to iron, an indispensable nutrient for bacterial growth. ENT is used as an exosiderophore by Pseudomonas aeruginosa with transport of ferri-ENT across the outer membrane by the PfeA transporter. Next to the pfeA gene on the chromosome is localized a gene encoding for an esterase, PfeE, whose transcription is regulated, as for pfeA, by the presence of ENT in bacterial environment. Purified PfeE hydrolyzed ferri-ENT into three molecules of 2,3-DHBS (2,3-dihydroxybenzoylserine) still complexed with ferric iron, and complete dissociation of iron from ENT chelating groups was only possible in the presence of both PfeE and an iron reducer, such as DTT. The crystal structure of PfeE and an inactive PfeE mutant complexed with ferri-ENT or a nonhydrolyzable ferri-catechol complex allowed identification of the enzyme binding site and the catalytic triad. Finally, cell fractionation and fluorescence microscopy showed periplasmic localization of PfeE in P. aeruginosa cells. Thus, the molecular mechanism of iron dissociation from ENT in P. aeruginosa differs from that previously described in E. coli. In P. aeruginosa, siderophore hydrolysis occurs in the periplasm, with ENT never reaching the bacterial cytoplasm. In E. coli, ferri-ENT crosses the inner membrane via the ABC transporter FepBCD and ferri-ENT is hydrolyzed by the esterase Fes only once it is in the cytoplasm. |
spellingShingle | Perraud, Q Moynié, L Gasser, V Munier, M Godet, J Hoegy, F Mély, Y Mislin, G Naismith, J Schalk, I A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa |
title | A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa |
title_full | A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa |
title_fullStr | A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa |
title_full_unstemmed | A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa |
title_short | A key role for the periplasmic PfeE esterase in iron acquisition via the siderophore enterobactin in Pseudomonas aeruginosa |
title_sort | key role for the periplasmic pfee esterase in iron acquisition via the siderophore enterobactin in pseudomonas aeruginosa |
work_keys_str_mv | AT perraudq akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT moyniel akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT gasserv akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT munierm akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT godetj akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT hoegyf akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT melyy akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT misling akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT naismithj akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT schalki akeyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT perraudq keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT moyniel keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT gasserv keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT munierm keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT godetj keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT hoegyf keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT melyy keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT misling keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT naismithj keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa AT schalki keyrolefortheperiplasmicpfeeesteraseinironacquisitionviathesiderophoreenterobactininpseudomonasaeruginosa |