The Chabauty-Kim method for relative completions
<p>In this thesis we develop a Chabauty--Kim theory for the relative completion of motivic fundamental groups, including Selmer stacks and moduli spaces of admissible torsors for the relative completion of the de Rham fundamental group. On one hand, this work generalizes results of Kim (and th...
Auteur principal: | Kantor, N |
---|---|
Autres auteurs: | Kim, M |
Format: | Thèse |
Langue: | English |
Publié: |
2019
|
Sujets: |
Documents similaires
-
An effective Chabauty-Kim theorem
par: Balakrishnan, J, et autres
Publié: (2019) -
Multiple zeta values and iterated Eisenstein integrals
par: Saad, A
Publié: (2020) -
Descent methods and torsion on Jacobians of higher genus curves
par: Nicholls, C
Publié: (2018) -
Effective Chabauty for symmetric powers of curves
par: Park, Jennifer Mun Young
Publié: (2014) -
Model theory of Shimura varieties
par: Restaino, S
Publié: (2019)