Decomposition and completion of sum-of-squares matrices
This paper introduces a notion of decomposition and completion of sum-of-squares (SOS) matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero only on a principal submatrix. Also, the co...
Hlavní autoři: | Zheng, Y, Fantuzzi, G, Papachristodoulou, A |
---|---|
Médium: | Journal article |
Vydáno: |
2018
|
Podobné jednotky
-
Fast ADMM for sum-of-squares programs using partial orthogonality
Autor: Zheng, Y, a další
Vydáno: (2018) -
Exploiting sparsity in the coefficient matching conditions in sum-of-squares programming using ADMM
Autor: Zheng, Y, a další
Vydáno: (2017) -
Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization
Autor: Zheng, Y, a další
Vydáno: (2022) -
Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials
Autor: Zheng, Y, a další
Vydáno: (2019) -
On the construction of Lyapunov functions using the sum of squares decomposition
Autor: Papachristodoulou, A, a další
Vydáno: (2002)