Decomposition and completion of sum-of-squares matrices
This paper introduces a notion of decomposition and completion of sum-of-squares (SOS) matrices. We show that a subset of sparse SOS matrices with chordal sparsity patterns can be equivalently decomposed into a sum of multiple SOS matrices that are nonzero only on a principal submatrix. Also, the co...
主要な著者: | Zheng, Y, Fantuzzi, G, Papachristodoulou, A |
---|---|
フォーマット: | Journal article |
出版事項: |
2018
|
類似資料
-
Fast ADMM for sum-of-squares programs using partial orthogonality
著者:: Zheng, Y, 等
出版事項: (2018) -
Exploiting sparsity in the coefficient matching conditions in sum-of-squares programming using ADMM
著者:: Zheng, Y, 等
出版事項: (2017) -
Block factor-width-two matrices and their applications to semidefinite and sum-of-squares optimization
著者:: Zheng, Y, 等
出版事項: (2022) -
Sparse sum-of-squares (SOS) optimization: A bridge between DSOS/SDSOS and SOS optimization for sparse polynomials
著者:: Zheng, Y, 等
出版事項: (2019) -
On the construction of Lyapunov functions using the sum of squares decomposition
著者:: Papachristodoulou, A, 等
出版事項: (2002)