Superconformal anomalies from superconformal Chern-Simons polynomials

We consider the 4-dimensional N = 1 Lie superconformal algebra and search for completely “symmetric” (in the graded sense) 3-index invariant tensors. The solution we find is unique and we show that the corresponding invariant polynomial cubic in the generalized curvatures of superconformal gravity v...

Descrizione completa

Dettagli Bibliografici
Autori principali: Imbimbo, C, Rovere, D, Warman, A
Natura: Journal article
Lingua:English
Pubblicazione: Springer 2024
Descrizione
Riassunto:We consider the 4-dimensional N = 1 Lie superconformal algebra and search for completely “symmetric” (in the graded sense) 3-index invariant tensors. The solution we find is unique and we show that the corresponding invariant polynomial cubic in the generalized curvatures of superconformal gravity vanishes. Consequently, the associated Chern-Simons polynomial is a non-trivial anomaly cocycle. We explicitly compute this cocycle to all orders in the independent fields of superconformal gravity and establish that it is BRST equivalent to the so-called superconformal a-anomaly. We briefly discuss the possibility that the superconformal c-anomaly also admits a similar Chern-Simons formulation and the potential holographic, 5-dimensional, interpretation of our results.