Lasso-type recovery of sparse representations for high-dimensional data
The Lasso is an attractive technique for regularization and variable selection for high-dimensional data, where the number of predictor variables $p_n$ is potentially much larger than the number of samples $n$. However, it was recently discovered that the sparsity pattern of the Lasso estimator can...
المؤلفون الرئيسيون: | Meinshausen, N, Yu, B |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
2008
|
مواد مشابهة
-
High-dimensional graphs and variable selection with the Lasso
حسب: Meinshausen, N, وآخرون
منشور في: (2006) -
LASSO ISOtone for High Dimensional Additive Isotonic Regression
حسب: Fang, Z, وآخرون
منشور في: (2010) -
Relaxed Lasso.
حسب: Meinshausen, N
منشور في: (2007) -
Sparse representations of high dimensional neural data
حسب: Sandeep K. Mody, وآخرون
منشور في: (2022-05-01) -
LASSO Homotopy-Based Sparse Representation Classification for fNIRS-BCI
حسب: Asma Gulraiz, وآخرون
منشور في: (2022-03-01)