Bohr sets and multiplicative Diophantine approximation
In two dimensions, Gallagher’s theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. We prove an inhomogeneous fiber version of Gallagher’s theorem, sharpening and making unconditional a result recently obtained conditionally by Beresnevich, Haynes,...
Main Author: | |
---|---|
Format: | Journal article |
Published: |
Duke University Press
2018
|
Summary: | In two dimensions, Gallagher’s theorem is a strengthening of the Littlewood conjecture that holds for almost all pairs of real numbers. We prove an inhomogeneous fiber version of Gallagher’s theorem, sharpening and making unconditional a result recently obtained conditionally by Beresnevich, Haynes, and Velani. The idea is to find large generalized arithmetic progressions within inhomogeneous Bohr sets, extending a construction given by Tao. This precise structure enables us to verify the hypotheses of the Duffin–Schaeffer theorem for the problem at hand, via the geometry of numbers. |
---|