On the stability of polynomial spectral graph filters
Spectral graph filters are a key component in state-of-the-art machine learning models used for graph-based learning, such as graph neural networks. For certain tasks stability of the spectral graph filters is important for learning suitable representations. Understanding the type of structural pert...
Asıl Yazarlar: | Kenlay, H, Thanou, D, Dong, X |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
IEEE
2020
|
Benzer Materyaller
-
Interpretable stability bounds for spectral graph filters
Yazar:: Kenlay, H, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
On the stability of graph convolutional neural networks under edge rewiring
Yazar:: Kenlay, H, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Structure-aware robustness certificates for graph classification
Yazar:: Osselin, P, ve diğerleri
Baskı/Yayın Bilgisi: (2023) -
Robustness analysis of graph-based machine learning
Yazar:: Kenlay, H
Baskı/Yayın Bilgisi: (2022) -
Graph similarity learning for change-point detection in dynamic networks
Yazar:: Sulem, D, ve diğerleri
Baskı/Yayın Bilgisi: (2023)