Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations
SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor ce...
Главные авторы: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Формат: | Journal article |
Язык: | English |
Опубликовано: |
American Society of Hematology
2018
|
_version_ | 1826295844251369472 |
---|---|
author | Pellagatti, A Armstrong, R Steeples, V Sharma, E Repapi, E Singh, S Sanchi, A Radujkovic, A Horn, P Dolatshad, H Roy, S Broxholme, J Lockstone, H Taylor, S Giagounidis, A Vyas, P Schuh, A Hamblin, A Papaemmanuil, E Killick, S Malcovati, L Hennrich, M Gavin, A Ho, A Luft, T Hellström-Lindberg, E Cazzola, M Smith, C Smith, S Boultwood, J |
author_facet | Pellagatti, A Armstrong, R Steeples, V Sharma, E Repapi, E Singh, S Sanchi, A Radujkovic, A Horn, P Dolatshad, H Roy, S Broxholme, J Lockstone, H Taylor, S Giagounidis, A Vyas, P Schuh, A Hamblin, A Papaemmanuil, E Killick, S Malcovati, L Hennrich, M Gavin, A Ho, A Luft, T Hellström-Lindberg, E Cazzola, M Smith, C Smith, S Boultwood, J |
author_sort | Pellagatti, A |
collection | OXFORD |
description | SF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. |
first_indexed | 2024-03-07T04:07:13Z |
format | Journal article |
id | oxford-uuid:c69647b4-5873-431e-a1fb-98135cd42d2c |
institution | University of Oxford |
language | English |
last_indexed | 2024-03-07T04:07:13Z |
publishDate | 2018 |
publisher | American Society of Hematology |
record_format | dspace |
spelling | oxford-uuid:c69647b4-5873-431e-a1fb-98135cd42d2c2022-03-27T06:39:19ZImpact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associationsJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:c69647b4-5873-431e-a1fb-98135cd42d2cEnglishSymplectic Elements at OxfordAmerican Society of Hematology2018Pellagatti, AArmstrong, RSteeples, VSharma, ERepapi, ESingh, SSanchi, ARadujkovic, AHorn, PDolatshad, HRoy, SBroxholme, JLockstone, HTaylor, SGiagounidis, AVyas, PSchuh, AHamblin, APapaemmanuil, EKillick, SMalcovati, LHennrich, MGavin, AHo, ALuft, THellström-Lindberg, ECazzola, MSmith, CSmith, SBoultwood, JSF3B1, SRSF2 and U2AF1 are the most frequently mutated splicing factor genes in the myelodysplastic syndromes (MDS). We have performed a comprehensive and systematic analysis to determine the impact of these commonly mutated splicing factors on pre-mRNA splicing in the bone marrow stem/progenitor cells and in the erythroid and myeloid precursors in splicing factor mutant MDS. Using RNA-seq, we determined the aberrantly spliced genes and dysregulated pathways in CD34+ cells of 84 MDS patients. Splicing factor mutations result in different alterations in splicing and largely affect different genes, but these converge in common dysregulated pathways and cellular processes, focused on RNA splicing, protein synthesis and mitochondrial dysfunction, suggesting common mechanisms of action in MDS. Many of these dysregulated pathways and cellular processes can be linked to the known disease pathophysiology associated with splicing factor mutations in MDS, whilst several others have not been previously associated with MDS, such as sirtuin signaling. We identified aberrantly spliced events associated with clinical variables, and isoforms which independently predict survival in MDS and implicate dysregulation of focal adhesion and extracellular exosomes as drivers of poor survival. Aberrantly spliced genes and dysregulated pathways were identified in the MDS-affected lineages in splicing factor mutant MDS. Functional studies demonstrated that knockdown of the mitosis regulators SEPT2 and AKAP8, aberrantly spliced target genes of SF3B1 and SRSF2 mutations respectively, led to impaired erythroid cell growth and differentiation. This study illuminates the impact of the common spliceosome mutations on the MDS phenotype and provides novel insights into disease pathophysiology. |
spellingShingle | Pellagatti, A Armstrong, R Steeples, V Sharma, E Repapi, E Singh, S Sanchi, A Radujkovic, A Horn, P Dolatshad, H Roy, S Broxholme, J Lockstone, H Taylor, S Giagounidis, A Vyas, P Schuh, A Hamblin, A Papaemmanuil, E Killick, S Malcovati, L Hennrich, M Gavin, A Ho, A Luft, T Hellström-Lindberg, E Cazzola, M Smith, C Smith, S Boultwood, J Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations |
title | Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations |
title_full | Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations |
title_fullStr | Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations |
title_full_unstemmed | Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations |
title_short | Impact of spliceosome mutations on RNA splicing in myelodysplasia: dysregulated genes/pathways and clinical associations |
title_sort | impact of spliceosome mutations on rna splicing in myelodysplasia dysregulated genes pathways and clinical associations |
work_keys_str_mv | AT pellagattia impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT armstrongr impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT steeplesv impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT sharmae impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT repapie impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT singhs impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT sanchia impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT radujkovica impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT hornp impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT dolatshadh impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT roys impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT broxholmej impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT lockstoneh impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT taylors impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT giagounidisa impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT vyasp impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT schuha impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT hamblina impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT papaemmanuile impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT killicks impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT malcovatil impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT hennrichm impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT gavina impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT hoa impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT luftt impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT hellstromlindberge impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT cazzolam impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT smithc impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT smiths impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations AT boultwoodj impactofspliceosomemutationsonrnasplicinginmyelodysplasiadysregulatedgenespathwaysandclinicalassociations |