Discrete Morse theoretic algorithms for computing homology of complexes and maps

We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) c...

সম্পূর্ণ বিবরণ

গ্রন্থ-পঞ্জীর বিবরন
প্রধান লেখক: Harker, S, Mischaikow, K, Mrozek, M, Nanda, V
বিন্যাস: Journal article
প্রকাশিত: Springer Verlag 2013
বিবরন
সংক্ষিপ্ত:We provide explicit and efficient reduction algorithms based on discrete Morse theory to simplify homology computation for a very general class of complexes. A set-valued map of top-dimensional cells between such complexes is a natural discrete approximation of an underlying (and possibly unknown) continuous function, especially when the evaluation of that function is subject to measurement errors. We introduce a new Morse theoretic preprocessing framework for deriving chain maps from such set-valued maps, and hence provide an effective scheme for computing the morphism induced on homology by the approximated continuous function.