Approximate Bayesian computation with path signatures
Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...
المؤلفون الرئيسيون: | Dyer, J, Cannon, P, Schmon, SM |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Proceedings of Machine Learning Research
2024
|
مواد مشابهة
-
Amortised likelihood-free inference for expensive time-series simulators with signatured ratio estimation
حسب: Dyer, J, وآخرون
منشور في: (2022) -
Black-box Bayesian inference for agent-based models
حسب: Dyer, J, وآخرون
منشور في: (2024) -
Multifidelity approximate Bayesian computation
حسب: Prescott, T, وآخرون
منشور في: (2020) -
Asymptotic properties of approximate Bayesian computation
حسب: Frazier, D, وآخرون
منشور في: (2018) -
Approximate Bayesian Computation for Discrete Spaces
حسب: Ilze A. Auzina, وآخرون
منشور في: (2021-03-01)