Approximate Bayesian computation with path signatures
Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...
Hlavní autoři: | Dyer, J, Cannon, P, Schmon, SM |
---|---|
Médium: | Conference item |
Jazyk: | English |
Vydáno: |
Proceedings of Machine Learning Research
2024
|
Podobné jednotky
-
Amortised likelihood-free inference for expensive time-series simulators with signatured ratio estimation
Autor: Dyer, J, a další
Vydáno: (2022) -
Black-box Bayesian inference for agent-based models
Autor: Dyer, J, a další
Vydáno: (2024) -
Multifidelity approximate Bayesian computation
Autor: Prescott, T, a další
Vydáno: (2020) -
Asymptotic properties of approximate Bayesian computation
Autor: Frazier, D, a další
Vydáno: (2018) -
Approximate Bayesian Computation for Discrete Spaces
Autor: Ilze A. Auzina, a další
Vydáno: (2021-03-01)