Approximate Bayesian computation with path signatures
Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...
Κύριοι συγγραφείς: | Dyer, J, Cannon, P, Schmon, SM |
---|---|
Μορφή: | Conference item |
Γλώσσα: | English |
Έκδοση: |
Proceedings of Machine Learning Research
2024
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Amortised likelihood-free inference for expensive time-series simulators with signatured ratio estimation
ανά: Dyer, J, κ.ά.
Έκδοση: (2022) -
Black-box Bayesian inference for agent-based models
ανά: Dyer, J, κ.ά.
Έκδοση: (2024) -
Multifidelity approximate Bayesian computation
ανά: Prescott, T, κ.ά.
Έκδοση: (2020) -
Asymptotic properties of approximate Bayesian computation
ανά: Frazier, D, κ.ά.
Έκδοση: (2018) -
Approximate Bayesian Computation for Discrete Spaces
ανά: Ilze A. Auzina, κ.ά.
Έκδοση: (2021-03-01)