Approximate Bayesian computation with path signatures
Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...
Glavni autori: | Dyer, J, Cannon, P, Schmon, SM |
---|---|
Format: | Conference item |
Jezik: | English |
Izdano: |
Proceedings of Machine Learning Research
2024
|
Slični predmeti
-
Amortised likelihood-free inference for expensive time-series simulators with signatured ratio estimation
od: Dyer, J, i dr.
Izdano: (2022) -
Black-box Bayesian inference for agent-based models
od: Dyer, J, i dr.
Izdano: (2024) -
Multifidelity approximate Bayesian computation
od: Prescott, T, i dr.
Izdano: (2020) -
Asymptotic properties of approximate Bayesian computation
od: Frazier, D, i dr.
Izdano: (2018) -
Approximate Bayesian Computation for Discrete Spaces
od: Ilze A. Auzina, i dr.
Izdano: (2021-03-01)