Approximate Bayesian computation with path signatures
Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...
Үндсэн зохиолчид: | Dyer, J, Cannon, P, Schmon, SM |
---|---|
Формат: | Conference item |
Хэл сонгох: | English |
Хэвлэсэн: |
Proceedings of Machine Learning Research
2024
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Amortised likelihood-free inference for expensive time-series simulators with signatured ratio estimation
-н: Dyer, J, зэрэг
Хэвлэсэн: (2022) -
Black-box Bayesian inference for agent-based models
-н: Dyer, J, зэрэг
Хэвлэсэн: (2024) -
Multifidelity approximate Bayesian computation
-н: Prescott, T, зэрэг
Хэвлэсэн: (2020) -
Asymptotic properties of approximate Bayesian computation
-н: Frazier, D, зэрэг
Хэвлэсэн: (2018) -
Approximate Bayesian Computation for Discrete Spaces
-н: Ilze A. Auzina, зэрэг
Хэвлэсэн: (2021-03-01)