Approximate Bayesian computation with path signatures
Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...
Главные авторы: | Dyer, J, Cannon, P, Schmon, SM |
---|---|
Формат: | Conference item |
Язык: | English |
Опубликовано: |
Proceedings of Machine Learning Research
2024
|
Схожие документы
-
Amortised likelihood-free inference for expensive time-series simulators with signatured ratio estimation
по: Dyer, J, и др.
Опубликовано: (2022) -
Black-box Bayesian inference for agent-based models
по: Dyer, J, и др.
Опубликовано: (2024) -
Multifidelity approximate Bayesian computation
по: Prescott, T, и др.
Опубликовано: (2020) -
Asymptotic properties of approximate Bayesian computation
по: Frazier, D, и др.
Опубликовано: (2018) -
Approximate Bayesian Computation for Discrete Spaces
по: Ilze A. Auzina, и др.
Опубликовано: (2021-03-01)