Approximate Bayesian computation with path signatures

Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...

Täydet tiedot

Bibliografiset tiedot
Päätekijät: Dyer, J, Cannon, P, Schmon, SM
Aineistotyyppi: Conference item
Kieli:English
Julkaistu: Proceedings of Machine Learning Research 2024