Approximate Bayesian computation with path signatures

Simulation models often lack tractable likelihood functions, making likelihood-free inference methods indispensable. Approximate Bayesian computation generates likelihood-free posterior samples by comparing simulated and observed data through some distance measure, but existing approaches are often...

Mô tả đầy đủ

Chi tiết về thư mục
Những tác giả chính: Dyer, J, Cannon, P, Schmon, SM
Định dạng: Conference item
Ngôn ngữ:English
Được phát hành: Proceedings of Machine Learning Research 2024