Three-Dimensional Structure of Solar Wind Turbulence
We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of th...
Главные авторы: | , , , , , |
---|---|
Формат: | Journal article |
Опубликовано: |
2012
|
_version_ | 1826296189061955584 |
---|---|
author | Chen, C Mallet, A Schekochihin, A Horbury, T Wicks, RT Bale, S |
author_facet | Chen, C Mallet, A Schekochihin, A Horbury, T Wicks, RT Bale, S |
author_sort | Chen, C |
collection | OXFORD |
description | We present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind. |
first_indexed | 2024-03-07T04:12:30Z |
format | Journal article |
id | oxford-uuid:c84efd7f-c08c-4f41-8a8e-81bbed59d6d3 |
institution | University of Oxford |
last_indexed | 2024-03-07T04:12:30Z |
publishDate | 2012 |
record_format | dspace |
spelling | oxford-uuid:c84efd7f-c08c-4f41-8a8e-81bbed59d6d32022-03-27T06:51:15ZThree-Dimensional Structure of Solar Wind TurbulenceJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:c84efd7f-c08c-4f41-8a8e-81bbed59d6d3Symplectic Elements at Oxford2012Chen, CMallet, ASchekochihin, AHorbury, TWicks, RTBale, SWe present a measurement of the scale-dependent, three-dimensional structure of the magnetic field fluctuations in inertial range solar wind turbulence with respect to a local, physically motivated coordinate system. The Alfvenic fluctuations are three-dimensionally anisotropic, with the sense of this anisotropy varying from large to small scales. At the outer scale, the magnetic field correlations are longest in the local fluctuation direction, consistent with Alfven waves. At the proton gyroscale, they are longest along the local mean field direction and shortest in the direction perpendicular to the local mean field and the local field fluctuation. The compressive fluctuations are highly elongated along the local mean field direction, although axially symmetric perpendicular to it. Their large anisotropy may explain why they are not heavily damped in the solar wind. |
spellingShingle | Chen, C Mallet, A Schekochihin, A Horbury, T Wicks, RT Bale, S Three-Dimensional Structure of Solar Wind Turbulence |
title | Three-Dimensional Structure of Solar Wind Turbulence |
title_full | Three-Dimensional Structure of Solar Wind Turbulence |
title_fullStr | Three-Dimensional Structure of Solar Wind Turbulence |
title_full_unstemmed | Three-Dimensional Structure of Solar Wind Turbulence |
title_short | Three-Dimensional Structure of Solar Wind Turbulence |
title_sort | three dimensional structure of solar wind turbulence |
work_keys_str_mv | AT chenc threedimensionalstructureofsolarwindturbulence AT malleta threedimensionalstructureofsolarwindturbulence AT schekochihina threedimensionalstructureofsolarwindturbulence AT horburyt threedimensionalstructureofsolarwindturbulence AT wicksrt threedimensionalstructureofsolarwindturbulence AT bales threedimensionalstructureofsolarwindturbulence |