Gradient bounded dynamic programming with submodular and concave extensible value functions

We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodu...

全面介绍

书目详细资料
Main Authors: Lebedev, D, Goulart, P, Margellos, K
格式: Conference item
语言:English
出版: Elsevier 2021
实物特征
总结:We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodular in its state-space, we present a new algorithm that computes deterministic upper and stochastic lower bounds of the value function similar to dual dynamic programming. We then show that the proposed algorithm terminates after a fnite number of iterations. Finally, we demonstrate the efficacy of our approach on a high-dimensional numerical example from delivery slot pricing in attended home delivery.