Gradient bounded dynamic programming with submodular and concave extensible value functions
We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodu...
المؤلفون الرئيسيون: | Lebedev, D, Goulart, P, Margellos, K |
---|---|
التنسيق: | Conference item |
اللغة: | English |
منشور في: |
Elsevier
2021
|
مواد مشابهة
-
Gradient-bounded dynamic programming for submodular and concave extensible value functions with probabilistic performance guarantees
حسب: Lebedev, D, وآخرون
منشور في: (2021) -
Linear programming-based submodular extensions for marginal estimation
حسب: Pansari, P, وآخرون
منشور في: (2019) -
Submodular Secretary Problem and Extensions
حسب: Zadimoghaddam, Morteza, وآخرون
منشور في: (2010) -
Optimal submodular extensions for marginal estimation
حسب: Pansari, P, وآخرون
منشور في: (2018) -
Which submodular functions are expressible using binary submodular functions?
حسب: Živný, S, وآخرون
منشور في: (2008)