Gradient bounded dynamic programming with submodular and concave extensible value functions
We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodu...
Autores principales: | Lebedev, D, Goulart, P, Margellos, K |
---|---|
Formato: | Conference item |
Lenguaje: | English |
Publicado: |
Elsevier
2021
|
Ejemplares similares
-
Gradient-bounded dynamic programming for submodular and concave extensible value functions with probabilistic performance guarantees
por: Lebedev, D, et al.
Publicado: (2021) -
Linear programming-based submodular extensions for marginal estimation
por: Pansari, P, et al.
Publicado: (2019) -
Submodular Secretary Problem and Extensions
por: Zadimoghaddam, Morteza, et al.
Publicado: (2010) -
Optimal submodular extensions for marginal estimation
por: Pansari, P, et al.
Publicado: (2018) -
Which submodular functions are expressible using binary submodular functions?
por: Živný, S, et al.
Publicado: (2008)