Gradient bounded dynamic programming with submodular and concave extensible value functions
We consider dynamic programming problems with finite, discrete-time horizons and prohibitively high-dimensional, discrete state-spaces for direct computation of the value function from the Bellman equation. For the case that the value function of the dynamic program is concave extensible and submodu...
Asıl Yazarlar: | Lebedev, D, Goulart, P, Margellos, K |
---|---|
Materyal Türü: | Conference item |
Dil: | English |
Baskı/Yayın Bilgisi: |
Elsevier
2021
|
Benzer Materyaller
-
Gradient-bounded dynamic programming for submodular and concave extensible value functions with probabilistic performance guarantees
Yazar:: Lebedev, D, ve diğerleri
Baskı/Yayın Bilgisi: (2021) -
Linear programming-based submodular extensions for marginal estimation
Yazar:: Pansari, P, ve diğerleri
Baskı/Yayın Bilgisi: (2019) -
Submodular Secretary Problem and Extensions
Yazar:: Zadimoghaddam, Morteza, ve diğerleri
Baskı/Yayın Bilgisi: (2010) -
Optimal submodular extensions for marginal estimation
Yazar:: Pansari, P, ve diğerleri
Baskı/Yayın Bilgisi: (2018) -
Which submodular functions are expressible using binary submodular functions?
Yazar:: Živný, S, ve diğerleri
Baskı/Yayın Bilgisi: (2008)