סיכום: | <p>Green ammonia is gaining momentum as a globally significant technology for deep decarbonisation. In this thesis, several models are developed across chemical, techno-economic, and energy system modelling disciplines to explore the future role of green ammonia. First, standalone models of production (i.e., power-to-ammonia) and re-electrification (i.e., ammonia-to-power) are developed and compared to competing technologies. Second, these models are integrated into a planning and dispatch energy system model (ESM) of India to 2050. The ESM has several novel additions including the sector coupling of hydrogen and ammonia, multiple years of granular weather data, and learning-curve-based technology cost forecasts. India is chosen as an ideal case study given its globally unmatched demand growth in all three relevant sectors: electricity, green hydrogen, and green ammonia. The projected electricity demands for green hydrogen and ammonia production account for 25% of the total Indian electricity demand in 2050, underscoring the transformational potential that green hydrogen and ammonia sector coupling can have on the Indian energy system.</p>
<p>The results of the state-of-the-art ESM highlight synergistic effects of hydrogen and ammonia sector coupling with the power system. The least-cost system employs seasonal green ammonia production paired with up to 40 million tonnes (i.e., 200 TWh) of ammonia storage, as well as some re-electrification via gas turbines. Sector coupling reduces system curtailment, addresses challenges of long-duration storage, and improves system resilience to interannual weather variations. While India is a crucial case study from a global decarbonisation perspective, the methodology and findings are generally applicable, and it is the aim of this work to motivate and accelerate the wider research community into considering the potential impacts of green ammonia sector coupling on electricity grid design. Finally, this work highlights strategic technology development direction for ammonia producers and gas turbine manufacturers, as well as implications for policymakers.</p>
|