A two-parameter family of measure-valued diffusions with Poisson–Dirichlet stationary distributions
We give a pathwise construction of a two-parameter family of purely-atomic-measure-valued diffusions in which ranked masses of atoms are stationary with the Poisson–Dirichlet(α,θ) distributions, for α∈(0,1) and θ≥0. These processes resolve a conjecture of Feng and Sun (Probab. Theory Related Fields...
Hlavní autoři: | Forman, N, Rizzolo, D, Shi, Q, Winkel, M |
---|---|
Médium: | Journal article |
Jazyk: | English |
Vydáno: |
Institute of Mathematical Statistics
2022
|
Podobné jednotky
-
Diffusions on a space of interval partitions: Poisson-Dirichlet stationary distributions
Autor: Forman, N, a další
Vydáno: (2021) -
Diffusions on a space of interval partitions: the two-parameter model
Autor: Forman, N, a další
Vydáno: (2023) -
Ranked masses in two-parameter Fleming-Viot diffusions
Autor: Forman, N, a další
Vydáno: (2022) -
REGENERATIVE TREE GROWTH: BINARY SELF-SIMILAR CONTINUUM RANDOM TREES AND POISSON-DIRICHLET COMPOSITIONS
Autor: Pitman, J, a další
Vydáno: (2009) -
Diffusion on a space of interval partitions: Construction from marked Lévy processes
Autor: Forman, N, a další
Vydáno: (2020)