Sums of divisor functions in Fq[t] and matrix integrals
<p>We study the mean square of sums of the <em>k</em>th divisor function <em>d<sub>k</sub></em>(<em>n</em>) over short intervals and arithmetic progressions for the rational function field over a finite field of <em>q</em> elements. I...
Main Authors: | Keating, J, Rodgers, B, Roditty-Gershon, E, Rudnick, Z |
---|---|
Formato: | Journal article |
Publicado: |
Springer
2017
|
Títulos similares
-
Variance of sums in arithmetic progressions of divisor functions associated with higher degree 𝐿-Functions in 𝔽q[𝑡]
por: Roditty-Gershon, E, et al.
Publicado: (2019) -
Variance of arithmetic sums and L-functions in Fq[t]
por: Hall, C, et al.
Publicado: (2019) -
The variance of the number of sums of two squares in Fq[T] in short intervals
por: Gorodetsky, O, et al.
Publicado: (2021) -
Averages of ratios of the Riemann zeta-function and correlations of divisor sums
por: Conrey, B, et al.
Publicado: (2017) -
Moments of zeta and correlations of divisor-sums: V
por: Conrey, B, et al.
Publicado: (2018)