Fast response temperature measurements in stirling cycle cryocooler components

One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor...

תיאור מלא

מידע ביבליוגרפי
Main Authors: Kar, K, Dadd, M, Bailey, P, Stone, C
פורמט: Journal article
שפה:English
יצא לאור: 2008
תיאור
סיכום:One reason that heat transfer processes are not well understood is the difficulty of obtaining reliable temperature measurements when gas temperatures vary rapidly. In the work described here gas temperatures have been measured using a fine wire resistance thermometer with a 3.8 micron active sensor. The equipment represented the basic elements of a cryocooler: a clearance seal linear compressor and a wire mesh regenerator. Both were operated close to ambient temperature, with gas temperatures being measured close to the regenerator. The test rig was run at different volume ratios, frequencies (8-50 Hz), gases and filling pressures (1-26 bar). The waveforms of the gas temperature were found to vary dramatically for differing flow regimes. The results suggested that the thermometer was measuring the temperatures of two distinct volumes of gas, and that the gas must remain stratified in the compression space. A flow transition was identified from the cycle-by-cycle variations in temperature. The critical Reynolds number was determined to be 9.6-11. At the critical condition, the temperature was so unstable that fluctuations up to 250 Hz were observed. A series of validation tests have confirmed that the observed temperatures were not artifacts. © 2008 American Institute of Physics.