Estimating local commuting patterns from geolocated Twitter data
The emergence of large stores of transactional data generated by increasing use of digital devices presents a huge opportunity for policymakers to improve their knowledge of the local environment and thus make more informed and better decisions. A research frontier is hence emerging which involves e...
Main Authors: | McNeill, G, Bright, J, Hale, S |
---|---|
Format: | Journal article |
Udgivet: |
EDP Sciences
2017
|
Lignende værker
-
Estimating local commuting patterns from geolocated Twitter data
af: Graham McNeill, et al.
Udgivet: (2017-10-01) -
Where in the world are you? Geolocation and language identification in twitter
af: Graham, M, et al.
Udgivet: (2014) -
Estimating traffic disruption patterns with volunteered geographic information
af: Camargo, CQ, et al.
Udgivet: (2020) -
Commuter Mobility Patterns in Social Media: Correlating Twitter and LODES Data
af: Andreas Petutschnig, et al.
Udgivet: (2021-12-01) -
Twitter user geolocation method based on single-point toponym matching and local toponym filtering
af: Jin XUE, et al.
Udgivet: (2023-08-01)