Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination

Mass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitati...

Description complète

Détails bibliographiques
Auteurs principaux: Kura, K, Truscott, JE, Toor, J, Anderson, RM
Format: Journal article
Langue:English
Publié: Public Library of Science 2019
_version_ 1826296556982108160
author Kura, K
Truscott, JE
Toor, J
Anderson, RM
author_facet Kura, K
Truscott, JE
Toor, J
Anderson, RM
author_sort Kura, K
collection OXFORD
description Mass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitation are required. Ideally a vaccine is needed to ensure long term benefits and eliminate the need for repeated drug treatment since infection does not seem to induce lasting protective immunity. Currently, a candidate vaccine is under trial in a baboon animal model, and very encouraging results have been reported. In this paper, we develop an individual-based stochastic model to evaluate the effect of a vaccine with similar properties in humans to those recorded in baboons in achieving the World Health Organization (WHO) goals of morbidity control and elimination as a public health problem in populations living in a variety of transmission settings. MDA and vaccination assuming different durations of protection and coverage levels, alone or in combination, are examined as treatment strategies to reach the WHO goals of the elimination of morbidity and mortality in the coming decade. We find that the efficacy of a vaccine as an adjunct or main control tool will depend critically on a number of factors including the average duration of protection it provides, vaccine efficacy and the baseline prevalence prior to immunization. In low prevalence settings, simulations suggest that the WHO goals can be achieved for all treatment strategies. In moderate prevalence settings, a vaccine that provides 5 years of protection, can achieve both goals within 15 years of treatment. In high prevalence settings, by vaccinating at age 1, 6 and 11 we can achieve the morbidity control with a probability of nearly 0.89 but we cannot achieve elimination as a public health problem goal. A combined vaccination and MDA treatment plan has the greatest chance of achieving the WHO goals in the shorter term.
first_indexed 2024-03-07T04:18:10Z
format Journal article
id oxford-uuid:ca1a1c7e-988b-4526-a660-b379360f2bcd
institution University of Oxford
language English
last_indexed 2024-03-07T04:18:10Z
publishDate 2019
publisher Public Library of Science
record_format dspace
spelling oxford-uuid:ca1a1c7e-988b-4526-a660-b379360f2bcd2022-03-27T07:04:57ZModelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission eliminationJournal articlehttp://purl.org/coar/resource_type/c_dcae04bcuuid:ca1a1c7e-988b-4526-a660-b379360f2bcdEnglishSymplectic ElementsPublic Library of Science2019Kura, KTruscott, JEToor, JAnderson, RMMass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitation are required. Ideally a vaccine is needed to ensure long term benefits and eliminate the need for repeated drug treatment since infection does not seem to induce lasting protective immunity. Currently, a candidate vaccine is under trial in a baboon animal model, and very encouraging results have been reported. In this paper, we develop an individual-based stochastic model to evaluate the effect of a vaccine with similar properties in humans to those recorded in baboons in achieving the World Health Organization (WHO) goals of morbidity control and elimination as a public health problem in populations living in a variety of transmission settings. MDA and vaccination assuming different durations of protection and coverage levels, alone or in combination, are examined as treatment strategies to reach the WHO goals of the elimination of morbidity and mortality in the coming decade. We find that the efficacy of a vaccine as an adjunct or main control tool will depend critically on a number of factors including the average duration of protection it provides, vaccine efficacy and the baseline prevalence prior to immunization. In low prevalence settings, simulations suggest that the WHO goals can be achieved for all treatment strategies. In moderate prevalence settings, a vaccine that provides 5 years of protection, can achieve both goals within 15 years of treatment. In high prevalence settings, by vaccinating at age 1, 6 and 11 we can achieve the morbidity control with a probability of nearly 0.89 but we cannot achieve elimination as a public health problem goal. A combined vaccination and MDA treatment plan has the greatest chance of achieving the WHO goals in the shorter term.
spellingShingle Kura, K
Truscott, JE
Toor, J
Anderson, RM
Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
title Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
title_full Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
title_fullStr Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
title_full_unstemmed Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
title_short Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
title_sort modelling the impact of a schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination
work_keys_str_mv AT kurak modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination
AT truscottje modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination
AT toorj modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination
AT andersonrm modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination