Towards formal verification of Bayesian inference in probabilistic programming via guaranteed bounds
<p>Probabilistic models are an indispensable tool in many scientific fields, from the social and medical sciences to physics and machine learning. In probabilistic programming, such models are specified as computer programs: a flexible yet precise representation that allows for automated analy...
Hoofdauteur: | Zaiser, F |
---|---|
Andere auteurs: | Murawski, A |
Formaat: | Thesis |
Taal: | English |
Gepubliceerd in: |
2024
|
Onderwerpen: |
Gelijkaardige items
-
Static posterior inference of Bayesian probabilistic programming via polynomial solving
door: Wang, Peixin, et al.
Gepubliceerd in: (2024) -
Fast and correct variational inference for probabilistic programming: Differentiability, reparameterisation and smoothing
door: Wagner, D
Gepubliceerd in: (2023) -
Semantic Probabilistic Inference of Predictions
door: E. E. Vityaev
Gepubliceerd in: (2017-08-01) -
Stan: A Probabilistic Programming Language
door: Bob Carpenter, et al.
Gepubliceerd in: (2017-01-01) -
Increasing Interpretability of Bayesian Probabilistic Programming Models Through Interactive Representations
door: Evdoxia Taka, et al.
Gepubliceerd in: (2020-12-01)