Continual unsupervised representation learning
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowl...
Κύριοι συγγραφείς: | Rao, D, Visin, F, Rusu, AA, Teh, YW, Pascanu, R, Hadsell, R |
---|---|
Μορφή: | Conference item |
Έκδοση: |
Conference on Neural Information Processing Systems
2019
|
Παρόμοια τεκμήρια
Παρόμοια τεκμήρια
-
Distral: robust multitask reinforcement learning
ανά: Teh, YW, κ.ά.
Έκδοση: (2017) -
Continuous hierarchical representations with poincaré Variational Auto-Encoder
ανά: Mathieu,E, κ.ά.
Έκδοση: (2019) -
Unsupervised learning of invariant representations
ανά: Anselmi, Fabio, κ.ά.
Έκδοση: (2018) -
Kalman contrastive unsupervised representation learning
ανά: Mohammad Mahdi Jahani Yekta
Έκδοση: (2024-12-01) -
Unsupervised generative variational continual learning
ανά: Liu, Guimeng
Έκδοση: (2023)