Continual unsupervised representation learning
Continual learning aims to improve the ability of modern learning systems to deal with non-stationary distributions, typically by attempting to learn a series of tasks sequentially. Prior art in the field has largely considered supervised or reinforcement learning tasks, and often assumes full knowl...
Автори: | Rao, D, Visin, F, Rusu, AA, Teh, YW, Pascanu, R, Hadsell, R |
---|---|
Формат: | Conference item |
Опубліковано: |
Conference on Neural Information Processing Systems
2019
|
Схожі ресурси
Схожі ресурси
-
Distral: robust multitask reinforcement learning
за авторством: Teh, YW, та інші
Опубліковано: (2017) -
Continuous hierarchical representations with poincaré Variational Auto-Encoder
за авторством: Mathieu,E, та інші
Опубліковано: (2019) -
Unsupervised learning of invariant representations
за авторством: Anselmi, Fabio, та інші
Опубліковано: (2018) -
Kalman contrastive unsupervised representation learning
за авторством: Mohammad Mahdi Jahani Yekta
Опубліковано: (2024-12-01) -
Unsupervised generative variational continual learning
за авторством: Liu, Guimeng
Опубліковано: (2023)