Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
المؤلفون الرئيسيون: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
التنسيق: | Journal article |
اللغة: | English |
منشور في: |
Springer Nature
2023
|
مواد مشابهة
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
حسب: Vít Růžička, وآخرون
منشور في: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
حسب: A. Vaughan, وآخرون
منشور في: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
حسب: J. Roger, وآخرون
منشور في: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
حسب: E. Sánchez-García, وآخرون
منشور في: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
حسب: Jon Alvarez Justo, وآخرون
منشور في: (2025-01-01)