Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Príomhchruthaitheoirí: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Formáid: | Journal article |
Teanga: | English |
Foilsithe / Cruthaithe: |
Springer Nature
2023
|
Míreanna comhchosúla
Míreanna comhchosúla
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
de réir: Vít Růžička, et al.
Foilsithe / Cruthaithe: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
de réir: A. Vaughan, et al.
Foilsithe / Cruthaithe: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
de réir: J. Roger, et al.
Foilsithe / Cruthaithe: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
de réir: E. Sánchez-García, et al.
Foilsithe / Cruthaithe: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
de réir: Jon Alvarez Justo, et al.
Foilsithe / Cruthaithe: (2025-01-01)