Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Main Authors: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
פורמט: | Journal article |
שפה: | English |
יצא לאור: |
Springer Nature
2023
|
פריטים דומים
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
מאת: Vít Růžička, et al.
יצא לאור: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
מאת: A. Vaughan, et al.
יצא לאור: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
מאת: J. Roger, et al.
יצא לאור: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
מאת: E. Sánchez-García, et al.
יצא לאור: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
מאת: Jon Alvarez Justo, et al.
יצא לאור: (2025-01-01)