Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Үндсэн зохиолчид: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Формат: | Journal article |
Хэл сонгох: | English |
Хэвлэсэн: |
Springer Nature
2023
|
Ижил төстэй зүйлс
Ижил төстэй зүйлс
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
-н: Vít Růžička, зэрэг
Хэвлэсэн: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
-н: A. Vaughan, зэрэг
Хэвлэсэн: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
-н: J. Roger, зэрэг
Хэвлэсэн: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
-н: E. Sánchez-García, зэрэг
Хэвлэсэн: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
-н: Jon Alvarez Justo, зэрэг
Хэвлэсэн: (2025-01-01)