Semantic segmentation of methane plumes with hyperspectral machine learning models
Methane is the second most important greenhouse gas contributor to climate change; at the same time its reduction has been denoted as one of the fastest pathways to preventing temperature growth due to its short atmospheric lifetime. In particular, the mitigation of active point-sources associated w...
Hoofdauteurs: | Růžička, V, Mateo-Garcia, G, Gómez-Chova, L, Vaughan, A, Guanter, L, Markham, A |
---|---|
Formaat: | Journal article |
Taal: | English |
Gepubliceerd in: |
Springer Nature
2023
|
Gelijkaardige items
-
Semantic segmentation of methane plumes with hyperspectral machine learning models
door: Vít Růžička, et al.
Gepubliceerd in: (2023-11-01) -
CH4Net: a deep learning model for monitoring methane super-emitters with Sentinel-2 imagery
door: A. Vaughan, et al.
Gepubliceerd in: (2024-05-01) -
Exploiting the entire near-infrared spectral range to improve the detection of methane plumes with high-resolution imaging spectrometers
door: J. Roger, et al.
Gepubliceerd in: (2024-02-01) -
Mapping methane plumes at very high spatial resolution with the WorldView-3 satellite
door: E. Sánchez-García, et al.
Gepubliceerd in: (2022-03-01) -
Semantic Segmentation in Satellite Hyperspectral Imagery by Deep Learning
door: Jon Alvarez Justo, et al.
Gepubliceerd in: (2025-01-01)